NOTE

Methods for the Numerical Evaluation of Fourier Integrals ${ }^{1}$

In many problems, Fourier transforms of the form

$$
\begin{equation*}
\Phi(\omega)=\int_{0}^{\infty} f(t) \cos (\omega t) d t \tag{1}
\end{equation*}
$$

must be evaluated numerically. Some methods have been used to treat this problem with limited success [1]-[4]. The method introduced here has also been successfully employed in certain applications [5]. In this method, the domain of integration is partitioned into two regions: $0 \leqslant t \leqslant t_{m}$ and $t_{m} \leqslant t \leqslant \infty$, designated as the near region and asymptotic region, respectively. The Fourier integral can then be written as $\Phi(\omega)=I\left(\omega, t_{m}\right)+J\left(\omega, t_{m}\right)$, where I and J are the near and asymptotic contributions, respectively. The different methods of evaluating the terms I and J, are discussed below.

A. Near Region

Let $\left\{t_{i}\right\}, i=1,2 \cdots m$, be a proper net (subdivision) on the interval $\left\{0, t_{m}\right\}$. Then

$$
\begin{equation*}
I=\sum_{i=1}^{m-1} I_{i}, \quad \text { where } \quad I_{i}=\int_{t_{i}}^{t_{i+1}} f(t) \cos (\omega t) d t \tag{2}
\end{equation*}
$$

Different techniques can be used to approximate the elements $\left\{I_{i}\right\}$. Commonly, $f(t)$ is approximated in the interval $\left(t_{i}, t_{i+1}\right)$ by a simple function whose product with $\cos (\omega t)$ is readily integrable in closed form. Hastrup [4] has used a linear function, and Filon [1] has used a quadratic. Since $f(t)$ must be monotonedecreasing over much of its domain, the behavior of such functions can often be better approximated by simple exponentials over limited regions. Thus, one may write $f(t) \cong g(t)=\alpha_{i} \exp \left(\beta_{i} t\right)$ for $\left(t_{i} \leqslant t \leqslant t_{i+1}\right)$ where the values of the parameters α_{i} and β_{i} are fixed by the conditions $g(t)=f(t)$ at $t=t_{i}$ and t_{i+1}. The exponential approximation yields

$$
\begin{align*}
I_{i}= & \frac{\alpha_{i}}{\beta_{i}{ }^{2}+\omega^{2}}\left\{e^{\beta_{i} t_{i+1}\left[\beta_{i} \cos \left(\omega t_{i+1}\right)+\omega \sin \left(\omega t_{i+1}\right)\right]}\right. \\
& \left.\left.-e^{\beta_{i} t_{i}\left[\beta_{i}\right.} \cos \left(\omega t_{i}\right)+\omega \sin \left(\omega t_{i}\right)\right]\right\} . \tag{3}
\end{align*}
$$

[^0]For slowly varying $f(t)$, an alternative approach employs the law of the mean. Applying the mean-value theorem to Eq. (2), one can write

$$
\begin{equation*}
I_{i}=f(\bar{t}) \int_{t_{i}}^{t_{i+1}} \cos (\omega t) d t=\frac{f(\bar{t})}{\omega}\left[\sin \left(\omega t_{i+1}\right)-\sin \left(\omega t_{i}\right)\right] \tag{4}
\end{equation*}
$$

where \bar{t} is some value of t in the interval (t_{i}, t_{i+1}). Application of the mean-value theorem implies that the zeros of $\cos (\omega t)$ must be a subset of $\left\{t_{i}\right\}$. The two simplest approximations for slowly varying $f(t)$ are $f(\bar{t}) \cong f\left[\frac{1}{2}\left(t_{i}+t_{i+1}\right)\right]$ or $f(\bar{t}) \cong$ $\frac{1}{2}\left[f\left(t_{i}\right)+f\left(t_{i+1}\right)\right]$.

In many experimental applications, $f(t)$ is not measured directly. Instead, the integral of $f(t)$ over an interval in t is observed. [Consider the example where $f(t)$ represents the count-rate function of some detection system. The total count recorded during any time interval is then the integral of $f(t)$ over that interval.] In such applications, where $f(t)$ does not change sign, it is appropriate to employ the law of the mean in a different way. One may write

$$
\begin{equation*}
I_{i}=\cos \left(\omega \bar{t}_{i}\right) \cdot F_{i}, \quad \text { where } \quad F_{i}=\int_{t_{i}}^{t_{i+1}} f(t) d t \tag{5}
\end{equation*}
$$

Here \bar{t}_{i} again represents some value of t in $\left(t_{i}, t_{i+1}\right)$, and F_{i} is an experimental datum. If the set of experimental data $\left\{F_{i}\right\}$ does not cover the entire range of t, then gaps must be filled in by interpolation.

B. Asymptotic Region

The asymptotic contribution, $J\left(\omega, t_{m}\right)$, depends essentially upon the behavior of $f(t)$. In this region, t_{m} is chosen large enough so that a simple asymptotic representation of $f(t)$ is valid for all $t \geqslant t_{m}$. If $f_{\text {gs }}(t)$ denotes this asymptotic representation, then $J_{\mathrm{ap}}(\omega, t)$, the approximate asymptotic contribution, is

$$
\begin{equation*}
J\left(\omega, t_{m}\right) \cong J_{\mathrm{ap}}\left(\omega, t_{m}\right)=\int_{t_{m}}^{\infty} f_{\mathrm{as}}(t) \cos (\omega t) d t, \quad\left(t \geqslant t_{m}\right) \tag{6}
\end{equation*}
$$

With t_{m} sufficiently large, $J_{\mathrm{ap}}\left(\omega, t_{m}\right)$ can be evaluated by expansion in an asymptotic series (i.e., in terms of inverse powers of t_{m}), giving to nth order

$$
\begin{equation*}
J_{\mathrm{ap}}\left(\omega, t_{m}\right)=\sum_{k=1}^{n} \frac{a_{k}\left(\omega, t_{m}\right)}{t_{m}{ }^{k}} . \tag{7}
\end{equation*}
$$

It is usually necessary to retain only a few terms. The coefficients $\left\{a_{k}\right\}$ often contain sine and cosine terms, so that by propitious choice of t_{m} the leading-term coefficient a_{1} can be made to vanish.

There exists another series expansion which may be useful between the near and asymptotic regions. Let $\left\{t_{\nu}\right\}$ represent the zeros of $\cos \{\omega t)$ in this intermediate region. Then the intermediate-region contribution, $K\left(\omega, t_{0}\right)$, is

$$
\begin{equation*}
K\left(\omega, t_{0}\right)=\sum_{v=1}^{N} A_{2 v+1}, \quad \text { where } \quad A_{2 \nu+1}=\int_{t_{2 v}}^{t_{2 v+2}} f(t) \cos (\omega t) d t . \tag{8}
\end{equation*}
$$

Using the Taylor-series expansion of $f(t)$ about $t=t_{2 v+1}$ in Eq. (8), one finds

$$
\begin{equation*}
A_{2 v+1}=\mp(1 / \omega) \sum_{n=0}^{\infty} \frac{f^{(2 n+1)}\left(t_{2 \nu+1}\right)}{(2 n+1)!}(1 / \omega)^{2 n+1} \int_{-\pi}^{\pi} x^{2 n+1} \sin x d x \tag{9}
\end{equation*}
$$

where the $(-)$ or $(+)$ sign applies if the principal value of $\left(\omega t_{2 v+1}\right)$ is $\frac{1}{2} \pi$ or $\frac{3}{2} \pi$, respectively. One finds for the first few terms

$$
\begin{align*}
A_{2 v+1}= & \mp(1 / \omega)\left[(2 \pi / \omega) f^{(1)}\left(t_{2 v+1}\right)+\frac{\pi\left(\pi^{2}-6\right)}{3 \omega^{3}} f^{(3)}\left(t_{2 v+1}\right)\right. \\
& \left.+\frac{\pi\left(\pi^{4}-20 \pi^{2}+120\right)}{60 \omega^{5}} f^{(5)}\left(t_{2 v+1}\right)+\cdots\right] . \tag{10}
\end{align*}
$$

For $f(t)$ slowly varying compared to $\cos (\omega t)$, the higher-order terms will decrease quite rapidly. This expansion may be useful in the asymptotic region. Here, calculations should be carried out until $K\left(\omega, t_{0}\right)=J_{\mathrm{ap}}\left(\omega, t_{0}\right)$ is independent of N.
Accuracy can be estimated using the fact that $\Phi(\omega)$ should be independent of t_{m}, provided the asymptotic expansions are valid. Moreover, since t_{m} can be chosen sufficiently large, one can always satisfy the condition, $|I| \gg\left|J_{\mathrm{ap}}\right|$. Hence, the asymptotic term can be used to estimate that value of t_{m} for which I approximates $\Phi(\omega)$ to a specified degree of accuracy. The asymptotic term can also provide an estimate for the remainder of the infinite alternating series considered by Hurwitz and Zweifel [3]. One need no longer be concerned with the convergence properties of such series, because the calculation in the near region can be terminated as soon as a desired accuracy has been attained. This procedure can be quite effective in many applications where comparison with experiment requires a knowledge of Fourier transforms to only a few percent.

C. Example

Numerical results have been obtained for the Fourier integral [5]

$$
\begin{equation*}
\Phi(\omega)=\frac{2 e^{-\alpha}}{\pi} \int_{0}^{\infty} \cos [(\omega-1) t] e^{\beta^{2} t^{2}} \exp \left\{\alpha e^{-\beta^{2} t^{2}} \cos t\right\} \cos \left\{\alpha e^{-\beta^{2} t^{2}} \sin t\right\} d t, \tag{11}
\end{equation*}
$$

where a and β are parameters. For the near-region contribution, Eq. (4) was used. The asymptotic contribution for this case is to third order

$$
\begin{equation*}
J_{\mathrm{ap}}\left(\omega, t_{m}\right)=-(-1)^{n}\left[\frac{2 e^{-\alpha}}{\pi}\right] \frac{(\omega-1) \exp \left(-\beta^{2} t_{m}{ }^{2}\right)}{\left(4 \beta^{4} t_{m}^{2}\right)} \tag{12}
\end{equation*}
$$

for values of t_{m} which satisfy $(\omega-1) t_{m}=\left(n+\frac{1}{2}\right) \pi$, with n an integer. Figure 1 , which displays the resulting Fourier transform obtained for the parameter values

Fig. 1. The Fourier transform of

$$
f(t)=\left(2 e^{-\alpha / \pi}\right) \exp \left(-\beta^{2} t^{2}\right) \exp \left[\alpha \exp \left(-\beta^{2} t^{2}\right) \cos t\right] \times \cos \left[\alpha \exp \left(-\beta^{2} t^{2}\right) \sin t\right]
$$

for $\alpha=0.01$ and $\beta=0.06$ in the region $\omega \geqslant 1.6$.
$\alpha=0.01$ and $\beta=0.06$, demonstrates the general utility of this method. Here a relative accuracy of better than 2% in the value of $\Phi(\omega)$ has been maintained over a domain of about six decades.

References

1. L. N. G. Filon, Proc. Royal Soc. Edinburgh, 49, 38 (1928).
2. Y. L. Luke, Proc. Cambridge Phil. Soc. 50, 269 (1954).
3. H. Hurwitz, Jr., and P. F. Zweifel, MTAC 10, 140 (1956).
4. O. F. Hastrup, Suffield Tech. Note No. 121, Department of National Defense, Canada (1964)
5. R. Gold, Rev. Sci. Instr. 36, 784 (1965).

> Raymond Gold
> Charles E. Cohn
> Ingeborg Olson
> Argonne National Laboratory
> Argonne, Illinois 60439

[^0]: ${ }^{1}$ Work performed under the auspices of the U.S. Atomic Energy Commission.

